Thursday, March 20, 2008

Cues, The Golden Retriever

How our natural responses to stimuli can inform the design process

"In every waking moment, our brains are processing the stimuli in our environment and responding, consciously and unconsciously, to what is going on around us. This may mean something simple like stopping automatically at a crosswalk based on the color of the traffic signal. Or it may mean something more deliberate, like deciding to turn left after orienting yourself by reading a street sign.

Both consciously and unconsciously, we also make decisions while interacting in an onscreen environment. We move automatically during routine tasks and through familiar interfaces. But what do we do when the interaction onscreen requires a very deliberate and thoughtful interaction—how do we determine the correct response to the stimulus? We need cues to help us draw from our experience and carry out an acceptable response. Cues are like little cognitive helper elves who prompt us toward a suitable interaction, reminding us of what goes where, when, and how. Cues can be singular reminders, like a string tied around your finger, or they can be contextual reminders, like remembering that you also need carrots when you are shopping for potatoes and onions in a supermarket.

When we’re arranging content and designing interactions for the onscreen environment, providing cues for users helps them interact more effectively and productively. Increased customer satisfaction, job performance, e-commerce, safety, and cognitive efficacy rely on deliberate interaction with the technology and thus easily benefit from the smart use of cues.

I’d like to frame a discussion of cues by touching on a mixture of topics including memory, a few theories from cognitive psychology, and multimedia research. It may get a little dry, but stick with me. The integration of these three areas not only affects how information is encoded and retrieved, it influences how and when cues might best be used.

Remembering Memory

Let’s refresh your memory on the topic of memory—stuff you probably already know. This is the foundation of how and why cuing is effective.

First, there’s the idea of encoding and retrieval (or recall). Encoding is converting information into a form usable in memory. And we tend to encode only as much information as we need to know. This is a safety valve for over-stimulation of the senses as well as a way of filtering out what we don’t need for later retrieval. Retrieval is bringing to mind for specific use a piece of information already encoded and stored in memory.

Memory is generally labeled long-term memory and short-term memory (or working memory, in cognitive psychology parlance). Our working memory holds a small amount of information for about 20 seconds for the purpose of manipulation—deciding what to do with sensory input from one’s environment or with an item of information recently retrieved from long-term memory. The familiar rule is that humans have the capacity to hold seven items (plus or minus two) in working memory. In contrast, long-term memory is considered limitless and information is stored there indefinitely. Information from working memory has the potential to become stored in long-term memory.

The Integration of Multimedia and Memory

Ingredient 1
By its nature, interaction in an onscreen environment can be considered multimedia. At the very least, visual elements (images, application windows, the cursor, etc.) are combined with verbal elements (semiotics, language, aural narration, etc). These are called modalities and they are processed differently in the human mind using different neurological channels: this process is called dual coding and it’s when images and words create separate representations for themselves in the brain3. This is important because cues unique to a given modality can be used to better retrieve information originally processed with that modality. For example, color coding the shapes of the states on a map as red or blue helps us store for later recall the political leanings of a given state—the shape of the state triggers our remembering the color.

In a “real world” environment, stimuli from the visual and verbal modalities (among others) guide the way we interact with that environment—influencing our working memory and long-term memory. These stimuli can get to be a lot of work for the little grey cells and it helps when the two modalities share the load—the cognitive load—of processing information. The same is true for the onscreen environment as well."    (Continued via Boxes and Arrows, Jamie Owen)    [Usability Resources]


Post a Comment

<< Home

<< Home